EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification
نویسندگان
چکیده
In this paper, we address the challenge of land use and land cover classification using remote sensing satellite images. For this challenging task, we use the openly and freely accessible Sentinel-2 satellite images provided within the scope of the Earth observation program Copernicus. The key contributions are as follows. We present a novel dataset based on satellite images covering 13 different spectral bands and consisting of 10 classes with in total 27,000 labeled images. We evaluate state-of-the-art deep Convolutional Neural Network (CNNs) on this novel dataset with its different spectral bands. We also evaluate deep CNNs on existing remote sensing datasets and compare the obtained results. With the proposed novel dataset, we achieved an overall classification accuracy of 98.57%. The classification system resulting from the proposed research opens a gate towards a number of Earth observation applications. We demonstrate how the classification system can be used for detecting land use or land cover changes and how it can assist in improving geographical maps.
منابع مشابه
Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملDevelopment of an Automatic Land Use Extraction System in Urban Areas using VHR Aerial Imagery and GIS Vector Data
Lack of detailed land use (LU) information and efficient data collection methods have made the modeling of urban systems difficult. This study aims to develop a novel hierarchical rule-based LU extraction framework using geographic vector and remotely sensed (RS) data, in order to extract detailed subzonal LU information, residential LU in this study. The LU extraction system is developed to ex...
متن کاملپایش و پیشبینی روند تغییرات کاربری اراضی با استفاده از تصاویر ماهوارهای و زنجیرۀ مارکوف (مطالعۀ موردی: حوزۀ آبخیز سمل- استان بوشهر)
Assessment of land use spatiotemporal changes provide valuable data for managers to elaborate plans. Land use change modeling is one of the methods used by planers to manage land use changes. Detection of such changes may help decision makers and planners to understand the factors in land use and land cover changes in order to take effective and useful measures. Remote sensing (RS) and geograph...
متن کاملComparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملEvaluation of Land Cover Changes Ysing Remote Sensing Technique (Case study: Hableh Rood Subwatershed of Shahrabad Basin)
The growing population and increasing socio-economic necessities creates a pressure on land use/land cover. Nowadays, land use change detection using remote sensing data provides quantitative and timely information for management and evaluation of natural resources. This study investigates the land use changes in part of Hableh Rood Watershed of Iran using Landsat 7 and 8 (Sensor ETM+ and OLI) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.00029 شماره
صفحات -
تاریخ انتشار 2017